Authors
Jixian Xu, Caleb C Boyd, Zhengshan J Yu, Axel F Palmstrom, Daniel J Witter, Bryon W Larson, Ryan M France, Jérémie Werner, Steven P Harvey, Eli J Wolf, William Weigand, Salman Manzoor, Maikel FAM Van Hest, Joseph J Berry, Joseph M Luther, Zachary C Holman, Michael D McGehee
Publication date
2020/3/6
Journal
Science
Volume
367
Issue
6482
Pages
1097-1104
Publisher
American Association for the Advancement of Science
Description
Wide–band gap metal halide perovskites are promising semiconductors to pair with silicon in tandem solar cells to pursue the goal of achieving power conversion efficiency (PCE) greater than 30% at low cost. However, wide–band gap perovskite solar cells have been fundamentally limited by photoinduced phase segregation and low open-circuit voltage. We report efficient 1.67–electron volt wide–band gap perovskite top cells using triple-halide alloys (chlorine, bromine, iodine) to tailor the band gap and stabilize the semiconductor under illumination. We show a factor of 2 increase in photocarrier lifetime and charge-carrier mobility that resulted from enhancing the solubility of chlorine by replacing some of the iodine with bromine to shrink the lattice parameter. We observed a suppression of light-induced phase segregation in films even at 100-sun illumination intensity and less than 4% degradation in …
Total citations
2020202120222023202491215192180141