Authors
Jack Sutton, Golnaz Shahtahmassebi, Quentin S Hanley, Haroldo V Ribeiro
Publication date
2024
Journal
Chaos, Solitons & Fractals
Volume
182
Issue
114787
Description
Power law scaling models have been used to understand the complexity of systems as diverse as cities, neurological activity, and rainfall and lightning. In the scaling framework, power laws and standard linear regression methods are widely used to estimate model parameters with assumed normality and fixed variance. Generalized linear models (GLM) can accommodate a wider range of distributions where the chosen distribution must meet the assumptions of the data to prevent model bias. We present a widely applicable Bayesian generalized logistic regression (BGLR) framework to more flexibly model a continuous real response addressing skew and heteroscedasticity. The Generalized Logistic Distribution (GLD) was selected to flexibly model skewed continuous data. This resulted in a nonlinear posterior distribution which may not have an analytical solution which can be solved numerically with Markov …
Scholar articles