Authors
Chao Mi, Jiajia Zhou, Fan Wang, Gungun Lin, Dayong Jin
Publication date
2019/11/5
Journal
Chemistry of Materials
Volume
31
Issue
22
Pages
9480-9487
Publisher
American Chemical Society
Description
Thermally responsive fluorescent nanoparticles can be constructed to allow robust, rapid, and noninvasive temperature measurements. Furthermore, due to their tiny size, they can be used to detect temperature changes at the nanoscale. In this way, such sensors are ideally suited to emerging applications including intracellular temperature sensing and microelectronics failure diagnostics. Despite their potential, current nanothermometers still suffer from limited sensitivity, dynamic range, and stability. By introducing thermal enhanced anti-Stokes emission from a pair of lanthanide ions, ytterbium and neodymium, we show an increase of more than 1 order of magnitude in both the sensitivity and the dynamic range when compared to conventional ytterbium and erbium-codoped nanothermometers. Here, we report heterogeneous temperature-responsive nanoparticles with a new record of sensitivity (9.6%/K at room …
Total citations
202020212022202320241828382617