Authors
Avidit Acharya, Matthew Blackwell, Maya Sen
Publication date
2016/8
Journal
American Political Science Review
Volume
110
Issue
3
Pages
512-529
Publisher
Cambridge University Press
Description
Researchers seeking to establish causal relationships frequently control for variables on the purported causal pathway, checking whether the original treatment effect then disappears. Unfortunately, this common approach may lead to biased estimates. In this article, we show that the bias can be avoided by focusing on a quantity of interest called the controlled direct effect. Under certain conditions, the controlled direct effect enables researchers to rule out competing explanations—an important objective for political scientists. To estimate the controlled direct effect without bias, we describe an easy-to-implement estimation strategy from the biostatistics literature. We extend this approach by deriving a consistent variance estimator and demonstrating how to conduct a sensitivity analysis. Two examples—one on ethnic fractionalization’s effect on civil war and one on the impact of historical plough use on contemporary …
Total citations
201420152016201720182019202020212022202320243214284465889211511670
Scholar articles
A Acharya, M Blackwell, M Sen - Unpublished manuscript. Harvard University …, 2015