Authors
Miklós Kertész, Réka Aszalós, Attila Lengyel, Gábor Ónodi
Publication date
2017/11/17
Journal
PLoS One
Volume
12
Issue
11
Pages
e0188260
Publisher
Public Library of Science
Description
Climate change and land use change are two major elements of human-induced global environmental change. In temperate grasslands and woodlands, increasing frequency of extreme weather events like droughts and increasing severity of wildfires has altered the structure and dynamics of vegetation. In this paper, we studied the impact of wildfires and the year-to-year differences in precipitation on species composition changes in semi-arid grasslands of a forest-steppe complex ecosystem which has been partially disturbed by wildfires. Particularly, we investigated both how long-term compositional dissimilarity changes and species richness are affected by year-to-year precipitation differences on burnt and unburnt areas. Study sites were located in central Hungary, in protected areas characterized by partially-burnt, juniper-poplar forest-steppe complexes of high biodiversity. Data were used from two long-term monitoring sites in the Kiskunság National Park, both characterized by the same habitat complex. We investigated the variation in species composition as a function of time using distance decay methodology. In each sampling area, compositional dissimilarity increased with the time elapsed between the sampling events, and species richness differences increased with increasing precipitation differences between consecutive years. We found that both the long-term compositional dissimilarity, and the year-to-year changes in species richness were higher in the burnt areas than in the unburnt ones. The long-term compositional dissimilarities were mostly caused by perennial species, while the year-to-year changes of species richness …
Total citations
20172018201920202021202220232024256510511